2,809 research outputs found

    The Wolf-Rayet stars in M31: I. Analysis of the late-type WN stars

    Full text link
    Context: Comprehensive studies of Wolf-Rayet stars were performed in the past for the Galactic and the LMC population. The results revealed significant differences, but also unexpected similarities between the WR populations of these different galaxies. Analyzing the WR stars in M31 will extend our understanding of these objects in different galactic environments. Aims: The present study aims at the late-type WN stars in M31. The stellar and wind parameters will tell about the formation of WR stars in other galaxies with different metallicity and star formation histories. The obtained parameters will provide constraints to the evolution of massive stars in the environment of M31. Methods: We used the latest version of the Potsdam Wolf-Rayet model atmosphere code to analyze the stars via fitting optical spectra and photometric data. To account for the relatively low temperatures of the late WN10 and WN11 subtypes, our WN models have been extended into this temperature regime. Results: Stellar and atmospheric parameters are derived for all known late-type WN stars in M31 with available spectra. All of these stars still have hydrogen in their outer envelopes, some of them up to 50% by mass. The stars are located on the cool side of the zero age main sequence in the Hertzsprung-Russell diagram, while their luminosities range from 10510^5 to 10610^6 Lsun. It is remarkable that no star exceeds 10610^6 Lsun. Conclusions: If formed via single-star evolution, the late-type WN stars in M31 stem from an initial mass range between 20 and 60 Msun. From the very late-type WN9-11 stars, only one star is located in the S Doradus instability strip. We do not find any late-type WN stars with the high luminosities known in the Milky Way.Comment: 11+11 pages, 13+18 figures, A&A, in pres

    The impact of rotation on the line profiles of Wolf-Rayet stars

    Full text link
    Massive Wolf-Rayet stars are recognized today to be in a very common, but short, evolutionary phase of massive stars. While our understanding of Wolf-Rayet stars has increased dramatically over the past decades, it remains unclear whether rapid rotators are among them. There are various indications that rapidly rotating Wolf-Rayet stars should exist. Unfortunately, due to their expanding atmospheres, rotational velocities of Wolf-Rayet stars are very difficult to measure. However, recently observed spectra of several Wolf-Rayet stars reveal peculiarly broad and round emission lines. Could these spectra imply rapid rotation? In this work, we model the effects of rotation on the atmospheres of Wolf-Rayet stars. We further investigate whether the peculiar spectra of five Wolf-Rayet stars may be explained with the help of stellar rotation, infer appropriate rotation parameters, and discuss the implications of our results. We make use of the Potsdam Wolf-Rayet (PoWR) non-LTE model atmosphere code. Since the observed spectra of Wolf-Rayet stars are mainly formed in their expanding atmospheres, rotation must be accounted for with a 3D integration scheme of the formal integral. For this purpose, we assume a rotational velocity field consisting of an inner co-rotating domain and an outer domain, where the angular momentum is conserved. We find that rotation can reproduce the unique spectra analyzed here. However, the inferred rotational velocities at the stellar surface are large (~200 km/s), and the inferred co-rotation radii (~10 stellar radii) suggest the existence of very strong photospheric magnetic fields (~20 kG)

    Stabilization of Polymers against Photodegradation

    Get PDF

    Megacities as Sources for Pathogenic Bacteria in Rivers and Their Fate Downstream

    Get PDF
    Poor sanitation, poor treatments of waste water, as well as catastrophic floods introduce pathogenic bacteria into rivers, infecting and killing many people. The goal of clean water for everyone has to be achieved with a still growing human population and their rapid concentration in large cities, often megacities. How long introduced pathogens survive in rivers and what their niches are remain poorly known but essential to control water-borne diseases in megacities. Biofilms are often niches for various pathogens because they possess high resistances against environmental stress. They also facilitate gene transfers of antibiotic resistance genes which become an increasing health problem. Beside biofilms, amoebae are carriers of pathogenic bacteria and niches for their survival. An overview about our current understanding of the fate and niches of pathogens in rivers, the multitude of microbial community interactions, and the impact of severe flooding, a prerequisite to control pathogens in polluted rivers, is given

    Consequences of Postnatally Elevated Insulin-Like Growth Factor-II in Transgenic Mice: Endocrine Changes and Effects on Body and Organ Growth.

    Get PDF
    Insulin-like growth factor-II (IGF-II) is an important regulator of embryonic growth and differentiation, but its function in postnatal life is unclear. To address this point, we generated transgenic mice harboring fusion genes in which a human IGF-II complementary DNA is placed under the transcriptional control of the rat phosphoenolpyruvate carboxykinase promoter. Transgene-specific messenger RNA was detected in liver, kidney, and several parts of the gut. Serum IGF-II levels in transgenic mice were 2-3 times higher than those in controls and increased after starvation. Circulating IGF-I correlated negatively and IGF-binding protein-2 (IGFBP-2) positively with IGF-II levels, suggesting that IGF-I is displaced from IGFBPs by IGF-II and that IGFII is a major regulator of IGFBP-2. Serum levels of IGFBP-3 and IGFBP-4 tended to be higher in phosphoenolpyruvate carboxykinase- IGF-II transgenic mice than in controls, as evaluated by ligand blot analysis. Starvation reduced serum IGF-I, but increased IGFBP-2 in transgenic mice more markedly than in controls. Fasting insulin levels were significantly reduced in transgenic mice, whereas glucose levels were not influenced by elevated IGF-II. The body growth of 4- and 12- week-old mice was not significantly influenced by elevated IGF-II, but transgenic mice displayed increased kidney and testis weight at the age of 4 weeks, and increased adrenal weight at the age of 12 weeks. Our results demonstrate that elevated IGF-II in postnatal life has multiple endocrine consequences and subtle time-specific effects on organ growth

    Coupling hydrodynamics with comoving frame radiative transfer: II. Stellar wind stratification in the high-mass X-ray binary Vela X-1

    Full text link
    CONTEXT: Vela X-1, a prototypical high mass X-ray binary (HMXB), hosts a neutron star (NS) in a close orbit around an early-B supergiant donor star. Accretion of the donor star's wind onto the NS powers its strong X-ray luminosity. To understand the physics of HMXBs, detailed knowledge about the donor star winds is required. AIMS: To gain a realistic picture of the donor star in Vela X-1, we constructed a hydrodynamically consistent atmosphere model describing the wind stratification while properly reproducing the observed donor spectrum. To investigate how X-ray illumination affects the stellar wind, we calculated additional models for different X-ray luminosity regimes. METHODS: We use the recently updated version of the PoWR code to consistently solve the hydrodynamic equation together with the statistical equations and the radiative transfer. RESULTS: The wind flow in Vela X-1 is driven by ions from various elements with Fe III and S III leading in the outer wind. The model-predicted mass-loss rate is in line with earlier empirical studies. The mass-loss rate is almost unaffected by the presence of the accreting NS in the wind. The terminal wind velocity is confirmed at v600v_\infty \approx 600 km/s. On the other hand, the wind velocity in the inner region where the NS is located is only 100\approx 100 km/s, which is not expected on the basis of a standard β\beta-velocity law. In models with an enhanced level of X-rays, the velocity field in the outer wind can be altered. If the X-ray flux is too high, the acceleration breaks down because the ionization increases. CONCLUSIONS: Accounting for radiation hydrodynamics, our Vela X-1 donor atmosphere model reveals a low wind speed at the NS location, and it provides quantitative information on wind driving in this important HMXB.Comment: 19 pages, 10 figures, accepted for publication in Astronomy & Astrophysic
    corecore